【推荐】数学教学计划范文集锦4篇
时光飞逝,时间在慢慢推演,又将迎来新的工作,新的挑战,做好计划,让自己成为更有竞争力的人吧。那么我们该怎么去写计划呢?以下是小编为大家收集的数学教学计划5篇,仅供参考,欢迎大家阅读。
数学教学计划 篇1一、学情分析
五(6)班大多数学生的观察力、记忆力、思维能力符合年龄及年级特点,具有一定的学习习惯,有良好的学习态度,学习数学的信心较强;学生分析能力有一定的提高。由于各种原因部分学生数学基础较差,同时分析问题的能力、灵活性解决问题的方面也欠缺,需要下大力量来培养训练。同时也存在个别学生学习习惯较差,家长配合不到位现象,影响学生学习数学的态度。本班的学生能够听从老师的教导,但是自主创新的意识还是比较缺乏,针对这现象在教学中对学生要加强培养自主探究意识及能力;对那些学习基础较差、家长常于疏忽的学生,应在课内课外加以帮助,使其树立学习数学的信心和兴趣,尽快养成良好的学习习惯,并同时提高学习成绩。
二、教材分析
这一册教材内容包括:观察物体(三)、因数与倍数、长方体和正方体、分数的意义和性质、图形的运动(三)、分数的加法和减法、折线统计图、数学广角和综合与实践活动等。
本册修订后的教材,既有原实验教材的主要特点,又呈现出一些新的特色。
1.改进因数与倍数教学的编排,体现数学教学改革的新理念,培养学生的数学素养
本册教材的编排既注意体现《标准》中关于因数与倍数教学与教材编排的要求,同时注重体现近年来有关这部分内容教学改革的经验首先,将以往教材“因数与倍数”的教学内容分散编排,安排在本册的两个单元里教学第二单元“因数与倍数”包括因数和倍数的意义,2、5、3的倍数的特征,质数和合数的含义等,重点是让学生了解和掌握这些重要的概念;在第四单元“分数的意义和性质”中,结合约分教学最大公因数的概念和求法,结合通分教学最小公倍数的概念和求法其次,注意所涉及的数的范围在1~100的自然数内,避免题目中的数目过大此外,在例题的安排、素材的选取、习题的设计等方面都采取了新的措施。
2.改进熟悉分数的编排,注意沟通知识间的联系,加强对分数意义的理解
从本学期开始,学生将要系统地学习分数的意义和性质、分数的四则运算同整数、小数知识一样,分数知识也是小学数学教学的重要内容,是进一步学习数学和其他学科所必需的基础知识分数的概念比较难理解,计算起来也比较复杂为了便于学生理解和掌握分数,本套教材仍然采用了以往教材的编排体系,把分数划分为两个阶段教学第一段安排在三年级上册,借助操作直观,使学生对分数有初步的熟悉,虽然也出现了简单的分数大小比较和同分母分数加、减法,目的是为了帮助学生更好地理解分数的初步概念,给学生积累一些感性知识在系统认识了小数和初步认识了分数的基础上,本册将引导学生由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生、分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分、分数与小数互化等技能,以及分数的加、减法计算在具体安排上,本套教材一方面注意体现《标准》所提倡的教学理念,提供丰富的学习素材,在学生已有知识和经验的基础上阐述新的内容,给学生创设自主探索的空间。
3.提供丰富的空间与图形的教学内容,注重动手实践与自主探索,促进学生空间观念的发展
小学阶段空间与图形教学的主要目标是发展学生的空间观念,与前几册一样,本册教材继续把促进学生空间观念的发展作为空间与图形内容编排的研究重点,在教学内容方面安排了“观察物体(三)”“长方体和正方体”“图形的运动(三)”。
4.加强统计知识的教学,发展学生的统计观念,逐步形成从数学的角度进行思考问题的思维习惯
通过四年多的数学学习,在统计与概率方面,学生已经掌握了一定的知识,形成了一定的能力,积累了一定的经验。本册教材教学折线统计图,根据统计内容的调整,将单式和复式折线统计图集中进行编排,这样的编排有利于学生把握折线统计图的特点和思想,并根据折线的变化特点对数据进行简单的分析,更好地了解统计在现实生活中的意义和作用,有效建构了数据分析观念。
5.有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的`能力
数学学习不仅可以使学生获得参与社会生活必不可少的知识和能力,而且还能有效地提高学生的逻辑推理能力,进而奠定发展更高素质的基础因此,培养学生良好的数学思维能力是数学教学要达到的重要目标之一本套教材总体设想之一是:系统而有步骤地渗入渗出数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力据此,在本册教材的“数学广角”单元,安排了“找次品”的教学,旨在通过“找次品”渗入渗出优化思想,让学生充分感受到数学与日常生活的密切联系优化是一种重要的数学思想方法,运用之可有效地分析和解决问题教材以“找次品”这一探索性操作活动为载体,让学生通过看察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。
6.情感、态度、价值观的培养渗入渗出于数学教学中,用数学的魅力和学
习的收获激发学生的学习兴趣与内在动机
本册教学内容涉及数学内容的各个领域,为学生探索奇妙的数学世界提供丰富素材。例如,“图形的运动(三)”中“你知道吗”呈现了艺术家们利用平移、对称和旋转设计出的美丽图案;综合与实践活动“打电话”、数学广角“找次品”等,都蕴含了优化思想方法,简洁巧妙的解决问题策略中闪烁着数学方法的奇妙。
三、教学目标
1.理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行分数与小数的互化,能够比较熟练地进行通分和约分。
2.掌握因数与倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的最大公因数和最小公倍数。
3.理解分数加减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题。
4.知道体积和容积的意义及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义。
5.结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法。
6.能在方格纸上将简单图形旋转90度;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案。
7.通过丰富的实例,理解众数的意义,会求一组数据的众数 ……此处隐藏3650个字……个可能结果。
师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?
生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。
师:那基本事件有什么特点呢?
问题:
(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
数学教学计划 篇4一、 教材分析
(一)教材所处的地位
这节课是义务教育课程标准实验教科书(北师大)八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、 能说出勾股定理的内容。
2、 会初步运用勾股定理进行简单的计算和实际运用。
3、 在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:
教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—猜想结论—实验操作—归纳总结—问题解决—课堂小结—布置作业七部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、 教学过程设计:
(一)提出问题:
首先创设这样一个问题情境:强大的台风使得一座高压线塔在离地面9米处断裂,塔顶落在离塔底部12米处,高压线塔折断之前有多高?
问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。
(二)猜想结论。
教师用计算机演示:
(1)在△ABC中,∠ACB=90°,∠A,∠B,∠C所对边分别为a,b和c,使△ABC运动起来,但始终保持∠ACB=90°,如拖动A点或B点改变a,b的长度来拖动AB边绕任一点旋转△ACB等。
(2)在以上过程中,始终测算 ,各取以上典型运动的某一两个状态的测算值列成表格,让学生观察三个数之间有何数量关系,得出猜想。
(三)实验操作:
1、投影课本图1—2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,再剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习极有帮助。
3、给出一个两直角边长分别为1.6,2.4这种含小数的直角三角形,对学生有一定的挑战性。让学生验证是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。
(四)归纳总结:
1、归纳
通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。
2、总结
勾股定理内容得出后,引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。
(五)问题解决:
让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。
(六)课堂小结:
主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。
(七)布置作业:
课本P7习题1.1-- 2,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。
四、 设计说明
1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—猜想结论—实验操作—归纳验证—问题解决—课堂小结—布置作业七部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。
3、关于练习的设计,除实际问题和课本习题以外,我准备设计一道开放题,大致思路是已知直角三角形的两条边,求出与这个三角形所有相关的结论。
4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。
文档为doc格式